This print-out should have 51 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering.
$001 \quad 10.0$ points
A complete neutralization reaction is performed by combining 200 mL 0.20 M LiOH and 100 mL 0.40 M nitrous acid $\left(\mathrm{HNO}_{2}\right)$. What is the pOH of the resulting solution?

1. 5.74
2. 5.50
3. 1.90
4. 11.5
5. 8.26
6. 2.14

$002 \quad 10.0$ points

What is the pH of a $0.07 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ aqueous solution?

1. 13.1461
2. 8.7
3. 0.853872
4. 1.31461
5. 9.8596

$003 \quad 10.0$ points

What is $\left[\mathrm{OH}^{-}\right]$in a 0.0050 M HCl solution?

1. $6.6 \times 10^{-5} \mathrm{M}$
2. $1.0 \times 10^{-7} \mathrm{M}$
3. $2.0 \times 10^{-12} \mathrm{M}$
4. 1.0 M
5. $5.0 \times 10^{-3} \mathrm{M}$

$004 \quad 10.0$ points

If the value of K_{b} for pyridine is 1.8×10^{-9}, calculate the equilibrium constant for

$$
\begin{aligned}
& \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \\
& \quad \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) .
\end{aligned}
$$

1. 1.8×10^{-16}
2. 5.6×10^{8}
3. -1.8×10^{-9}
4. 5.6×10^{-6}
5. 1.8×10^{-9}

$005 \quad 10.0$ points

For the neutralization reaction involving HCl and $\mathrm{Mg}(\mathrm{OH})_{2}$, how many liters of 0.60 M HCl are needed to react with 45 g of a 2.5 M $\mathrm{Mg}(\mathrm{OH})_{2}$ solution? $($ density $=1.3 \mathrm{~g} / \mathrm{mL})$

1. 0.011 L
2. 0.12 L
3. 0.29 L
4. 120 L
5. 0.14 L
6. 0.49 L

$006 \quad 10.0$ points

The conjugate pair of F^{-}is a...

1. weak acid
2. strong acid
3. strong base
4. weak base
5. neutral salt

Hydroxylamine is a weak molecular base with $K_{\mathrm{b}}=6.6 \times 10^{-9}$. What is the pH of a 0.0500 M solution of hydroxylamine?

1. $\mathrm{pH}=8.93$
2. $\mathrm{pH}=9.48$
3. $\mathrm{pH}=7.12$
4. $\mathrm{pH}=10.37$
5. $\mathrm{pH}=9.26$
6. $\mathrm{pH}=3.63$
7. $\mathrm{pH}=4.74$

$008 \quad 10.0$ points

What is $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$when $\left[\mathrm{OH}^{-}\right]=3.3 \times 10^{-9} \mathrm{M}$?

1. $6.6 \times 10^{-5} \mathrm{M}$
2. $3.3 \times 10^{-9} \mathrm{M}$
3. $3.0 \times 10^{-6} \mathrm{M}$
4. $3.3 \times 10^{-5} \mathrm{M}$
5. $1.0 \times 10^{-7} \mathrm{M}$

00910.0 points

Calculate the resulting pH if 365 mL of 2.88 $\mathrm{M} \mathrm{HNO}_{3}$ is mixed with 335 mL of 1.10 M $\mathrm{Ca}(\mathrm{OH})_{2}$ solution.

1. 1.46
2. 0.460
3. 2.36
4. 7.20
5. 0.067
6. 0.350

181 mL of an unknown HCl solution was neutralized in a titration with 36.2 mL of 0.250 M NaOH . What is the molarity of the unknown HCl solution?

$$
\text { 1. } 5.00 \times 10^{-2} \mathrm{M}
$$

2. $8.00 \times 10^{-1} \mathrm{M}$
3. $9.05 \times 10^{-2} \mathrm{M}$
4. $1.64 \times 10^{3} \mathrm{M}$
5. $2.50 \times 10^{-1} \mathrm{M}$

$011 \quad 10.0$ points

Which of the following is the WEAKEST acid?

1. HClO_{2}
2. HClO
3. HNO_{3}
4. HClO_{4}
$012 \quad 10.0$ points
Which equation represents $K_{\mathrm{a} 2}$ for sulfurous acid?

$$
\begin{aligned}
& \text { 1. } \mathrm{HSO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \\
& \qquad \mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
\end{aligned}
$$

2. $\mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow$

$$
\mathrm{HSO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

3. $\mathrm{HSO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow$

$$
\mathrm{SO}_{3}^{2-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

$$
\text { 4. } \mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})+2 \underset{\mathrm{HO}_{3}^{2-}(\mathrm{Oq})}{\mathrm{H}^{2-}(\mathrm{aq})}+2 \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

5. $\mathrm{SO}_{3}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow(\mathrm{HSO}-3 \mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
$013 \quad 10.0$ points
A 0.200 M solution of a weak monoprotic acid HA is found to have a pH of 3.00 at room
temperature. What is the ionization constant of this acid?
6. 5.30
7. 1.0×10^{-3}
8. 1.8×10^{-5}
9. 5.0×10^{-6}
10. 5.0×10^{-3}
11. 2.0×10^{-5}
12. 1.0×10^{-6}
13. 2.0×10^{-9}

$014 \quad 10.0$ points

At $25^{\circ} \mathrm{C}$, water solutions which are neutral have a pH of

1. about 7 .
2. about 0 .
3. about 14 .
4. infinity.

015 (part 1 of 2) 10.0 points

Calculate the pH of the solute in an aqueous solution of $0.45 \mathrm{M} \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ (aq) (pyridine) if the K_{b} is 1.8×10^{-9}.

1. 9.51306
2. 9.49978
3. 9.05019
4. 9.52207
5. 9.07918
6. 9.27815
7. 9.49181
8. 9.47273
9. 9.53576
10. 9.45424

Your answer must be within ± 0.005.

What is the percentage protonation of the solute?

1. 0.0080904
2. 0.00518321
3. 0.00632456
4. 0.00733017
5. 0.00781133
6. 0.00524222
7. 0.0107763
8. 0.00884652
9. 0.00914991
10. 0.00569495

Answer in units of \%.

$017 \quad 10.0$ points

Calculate the concentration of HCO_{3}^{-}present in $0.0322 \mathrm{M} \mathrm{H}_{2} \mathrm{CO}_{3}$.

1. 0.000236977
2. 0.000274474
3. 0.000319772
4. 0.000117669
5. 0.000225732
6. 0.000193972
7. 0.00033068
8. 0.000304127
9. 0.000152804
10. 0.000389878

Answer in units of $\mathrm{mol} / \mathrm{L}$.
$018 \quad 10.0$ points
What is the pH of a $0.036 \mathrm{M} \mathrm{HNO}_{3}$ solution?

1. 2.72
2. 5.36
3. 12.56
4. 2.88
5. 1.64
6. 1.44
7. 1.36
8. 5.56

What is the pH of a 0.37 M solution of anilinium nitrate $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{NO}_{3}\right)$? K_{b} for aniline is 4.2×10^{-10}.

1. 2.53959
2. 2.62152
3. 2.75465
4. 2.70956
5. 2.73856
6. 2.55905
7. 2.60414
8. 2.67225
9. 2.52752
10. 2.58043

Your answer must be within $\pm 0.4 \%$

$020 \quad 10.0$ points

The ΔH° for the autoionization of water is $55.7 \mathrm{~kJ} / \mathrm{mol}$. Which of the following is/are true regarding the autoionization of pure water at $37^{\circ} \mathrm{C}$?
I) The concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$will be greater at $37^{\circ} \mathrm{C}$ than at standard conditions
II) $\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
III) K_{w} is equal to 1×10^{-14}
IV) The concentration of OH^{-}will be lower at $37^{\circ} \mathrm{C}$ than standard conditions

1. I, II, and III
2. I and II
3. II and IV
4. III only
5. II only
6. I, II, and IV
$021 \quad 10.0$ points
Which of the following can exhibit amphoterism?
7. CrO_{4}^{2-}
8. HClO_{4}
9. HPO_{4}^{2-}
10. Sn^{2+}
11. O^{2-}

$022 \quad 10.0$ points

Consider the fractional composition diagram for the amino acid alanine.

What is the structure of the dominant species at pH 6 ?

$$
\text { 1. }{ }^{-} \mathrm{OOC}-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{3}^{+}
$$

2. ${ }^{-} \mathrm{OOC}-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{2}$

$$
\text { 3. } \mathrm{HOOC}-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{3}^{+}
$$

$023 \quad 10.0$ points

Trichloroacetic acid is a harsh chemical, typically used for cosmetic treatments such as tattoo removal. What is the pH of a .0800 M trichloroacetic acid solution $\left(\mathrm{CCl}_{3} \mathrm{COOH}\right)$?

$$
\text { 1. } 2.000
$$

2. 1.097
3. 0.990
4. 0.824
5. 1.205
6. 2.019

What is the hydroxide concentration $\left[\mathrm{OH}^{-}\right]$in an aqueous solution in which the hydronium ion concentration $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is $1 \times 10^{-5} \mathrm{M}$?

1. $1 \times 10^{-9} \mathrm{M}$
$2.1 \times 10^{-14} \mathrm{M}$
2. $1 \times 10^{-5} \mathrm{M}$
3. $1 \times 10^{-7} \mathrm{M}$

$025 \quad 10.0$ points

In the following equation, water is acting as a(n)...

$$
\begin{aligned}
& \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \\
& \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
\end{aligned}
$$

1. Acid
2. Base
3. Neither
$026 \quad 10.0$ points
The generic weak acid HA has a percent ionization equal to 10.8% at a 0.025 M concentration. What is the K_{a} of this acid?
4. 1.43×10^{-3}
5. 4.54×10^{-4}
6. 2.50×10^{-4}
7. 5.97×10^{-4}
8. 3.27×10^{-4}
$027 \quad 10.0$ points
A student titrated a sample containing 107 mL of 0.28 M NaOH with 0.72 M HCl . What is the pH of the solution after 23 mL of the hydrochloric acid has been added?
9. 13.02
10. 0.98
11. -0.02
12. 7
13. 14.02

$028 \quad 10.0$ points

What is the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions in a 0.20 M solution of $\mathrm{Ca}(\mathrm{OH})_{2}$ at $25^{\circ} \mathrm{C}$?

1. 0.40 M
2. $2.5 \times 10^{-14} \mathrm{M}$
3. $1 \times 10^{-13} \mathrm{M}$
4. $1.2 \times 10^{-14} \mathrm{M}$
5. 0.20 M
6. $3.7 \times 10^{-14} \mathrm{M}$

$029 \quad 10.0$ points

A 0.28 M solution of a weak acid is 3.5% ionized. What is the pH of the solution?

1. 0.55
2. 5.25
3. 2.01
4. 3.17
5. 1.46

$030 \quad 10.0$ points

The hydronium ion concentration in a solution at pH 10 has what relationship to the hydronium ion concentration in a solution at pH 13 ?

1. 3 times greater than
2. 100 times less than
3. 1,000 times less than
4. 1,000 times greater than

$031 \quad 10.0$ points

List the the following solution species in order of increasing acidity (weakest acid to strongest acid). Important note: measure the acidity/basicity of the solution species as written.

$$
\mathrm{HCN} \quad\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+} \quad \mathrm{HIO} \quad \mathrm{NH}_{4}^{+}
$$

1. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}<\mathrm{HIO}<\mathrm{NH}_{4}^{+}<\mathrm{HCN}$
2. $\mathrm{HIO}<\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}<\mathrm{NH}_{4}^{+}<\mathrm{HCN}$
3. $\mathrm{HCN}<\mathrm{NH}_{4}^{+}<\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}<\mathrm{HIO}$
4. $\mathrm{HIO}<\mathrm{NH}_{4}^{+}<\mathrm{HCN}<\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}$
5. $\mathrm{HCN}<\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}<\mathrm{HIO}<\mathrm{NH}_{4}^{+}$
6. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}<\mathrm{NH}_{4}^{+}<\mathrm{HCN}<\mathrm{HIO}$

$032 \quad 10.0$ points

According to the Bronsted-Lowry Theory of acids and bases, a base is

1. a substance which when dissolved in water yields OH^{-}.
2. an electron acceptor.
3. a proton donor.
4. a proton acceptor.
5. an electron donor.

03310.0 points

A 50.0 mL sample of 6 M HCl is added to 100.0 mL of 1.2 M NaOH . What is the pH of the resulting solution?

1. 0.09
2. 1.20
3. -0.08
4. 0.18
5. -1.20
$034 \quad 10.0$ points
The term " K_{a} for the ammonium ion" describes the equilibrium constant for which of the following reactions?

$$
\text { 1. } \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O}
$$

2. $\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$
3. The term is misleading, because the ammonium ion is not an acid.
4. $\mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$
5. $\mathrm{NH}_{4} \mathrm{Cl}($ solid $)+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}$
6. $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$

$035 \quad 10.0$ points

The pH of 0.010 M aniline(aq) is 8.32 .
What is the percentage aniline protonated?

1. 0.69%
2. 2.1%
3. 0.21%
4. 0.12%
5. 0.021%
$036 \quad 10.0$ points
What is the conjugate acid of NO_{3}^{-}?
6. $\mathrm{NO}_{2}{ }^{-}$
7. H^{+}
8. $\mathrm{NO}_{3}{ }^{2-}$
9. NH_{3}
10. OH^{-}
11. HNO_{3}

$037 \quad 10.0$ points

Write the charge balance equation for a dilute aqueous solution of HI.

1. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{I}^{-}\right]$
2. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
3. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{I}^{-}\right]+\left[\mathrm{OH}^{-}\right]$
4. $\left[\mathrm{I}^{-}\right]=\left[\mathrm{OH}^{-}\right]+\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
5. $[\mathrm{HI}]_{\text {initial }}=\left[\mathrm{I}^{-}\right]$

$038 \quad 10.0$ points

Which is NOT a conjugate acid-base pair?

1. $\mathrm{HCl}: \mathrm{Cl}^{-}$
2. $\mathrm{H}_{3} \mathrm{SO}_{4}^{+}: \mathrm{H}_{2} \mathrm{SO}_{4}$
3. $\mathrm{H}_{2} \mathrm{SO}_{4}: \mathrm{SO}_{4}^{2-}$
4. $\mathrm{H}_{2}: \mathrm{H}^{-}$
5. $\mathrm{H}_{2} \mathrm{O}: \mathrm{OH}^{-}$
$039 \quad 10.0$ points
Assume that five weak acids, identified only by numbers ($1,2,3,4$, and 5), have the following ionization constants.

Acid	Ionization Constant K_{a} value
1	1.0×10^{-3}
2	3.0×10^{-5}
3	2.6×10^{-7}
4	4.0×10^{-9}
5	7.3×10^{-11}

The anion of which acid is the strongest base?

1. 1
2. 5
3. 3
4. 4
5. 2

$040 \quad 10.0$ points

What is the pH of a 0.24 M solution of potassium generate $(\mathrm{KR}-\mathrm{COO}) ? K_{\mathrm{a}}$ for the generic $\operatorname{acid}(\mathrm{R}-\mathrm{COOH})$ is 2.7×10^{-8}.

1. 3.526
2. 10.604
3. 7.000
4. 6.431
5. 10.234
6. 10.474
7. 10.844
8. 3.396
9. 7.569
10. 10.324

$041 \quad 10.0$ points

For a solution labeled " $0.10 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$,"

1. $\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]$is greater than 0.10 M .
2. $\left[\mathrm{PO}_{4}^{3-}\right]=0.10 \mathrm{M}$.
3. $\left[\mathrm{H}^{+}\right]=0.10 \mathrm{M}$.
4. $\left[\mathrm{H}^{+}\right]$is less than 0.10 M .
5. $\left[\mathrm{H}^{+}\right]=0.30 \mathrm{M}$.

$042 \quad 10.0$ points

Which of the following is true in pure water at any temperature?

1. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$
2. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
3. $\mathrm{pH}=7.0$ or greater than 7.0
4. K_{w} decreases with increasing temperature.
5. $\mathrm{pH}=7.0$

$043 \quad 10.0$ points

Determine the pH of a 0.000496 M solution of NaOH .

1. 10.7459
2. 10.4928
3. 10.2833
4. 10.6955
5. 10.8506
6. 10.9138
7. 10.8156
8. 10.9523
9. 10.2279
10. 10.7924

$044 \quad 10.0$ points

The pH of $0.010 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$ is 2.24 . Estimate the concentration of PO_{4}^{3-} in the solution. For $\mathrm{H}_{3} \mathrm{PO}_{4}$, the values of $K_{\mathrm{a} 1}, K_{\mathrm{a} 2}$, and $K_{\mathrm{a} 3}$ are $7.6 \times 10^{-3}, 6.2 \times 10^{-8}$, and 2.1×10^{-13}, respectively.

1. $2.1 \times 10^{-13} \mathrm{M}$
2. $5.8 \times 10^{-3} \mathrm{M}$
3. $6.2 \times 10^{-8} \mathrm{M}$
4. $2.3 \times 10^{-18} \mathrm{M}$
5. $7.6 \times 10^{-3} \mathrm{M}$

$045 \quad 10.0$ points

What is the conjugate base of HPO_{4}^{2-} ?

1. OH^{-}
2. HPO_{4}^{2-}
3. $\mathrm{H}_{3} \mathrm{PO}_{4}$

4. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$

5. PO_{4}^{3-}

$046 \quad 10.0$ points

What is the percent ionization for a weak acid HX that is $0.40 \mathrm{M} ? K_{\mathrm{a}}=4.0 \times 10^{-7}$.

$$
\text { 1. } 2.0 \%
$$

2. 0.10%
3. 0.050%
4. 0.020%
5. 0.00020%

$047 \quad 10.0$ points

In the complete neutralization of butanoic acid (a weak acid) with an equal amount of sodium hydroxide (NaOH), the dominant species in the resulting solution is a...

1. weak base
2. weak acid
3. strong base
4. neutral salt
5. strong acid

$048 \quad 10.0$ points

What is the pH of a 0.480 M trimethylamine $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}\right)$ solution?

1. 8.81
2. 11.48
3. 11.87
4. 8.86
5. 2.13
6. 8.96
7. 2.25
8. 11.74
$049 \quad 10.0$ points
Which of the following aqueous solutions gives a pH greater than 7 ?
9. $10^{-8} \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$
10. $10^{-8} \mathrm{M} \mathrm{HCl}$
11. None of the solutions gives a pH greater than 7.
12. $10^{-8} \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$
13. $10^{-8} \mathrm{M} \mathrm{HCOOH}$
$050 \quad 10.0$ points
What is $\left[\mathrm{OH}^{-}\right]$when $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=8.2 \times 10^{-5} \mathrm{M}$?
14. $1.2 \times 10^{-10} \mathrm{M}$
15. $6.3 \times 10^{-9} \mathrm{M}$
16. $1.2 \times 10^{-4} \mathrm{M}$
17. $1.0 \times 10^{-7} \mathrm{M}$
18. $8.2 \times 10^{-5} \mathrm{M}$

$051 \quad 10.0$ points

Which pH represents a solution with 1000 times higher $\left[\mathrm{OH}^{-}\right]$than a solution with pH of 5 ?

1. $\mathrm{pH}=3$
2. $\mathrm{pH}=6$
3. $\mathrm{pH}=2$
4. $\mathrm{pH}=8$
5. $\mathrm{pH}=7$
6. $\mathrm{pH}=0.005$
7. $\mathrm{pH}=4$
8. $\mathrm{pH}=5000$
9. $\mathrm{pH}=1$
