This print-out should have 51 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

001 10.0 points

A complete neutralization reaction is performed by combining 200 mL 0.20 M LiOH and 100 mL 0.40 M nitrous acid (HNO₂). What is the pOH of the resulting solution?

- **1.** 5.74
- **2.** 5.50
- **3.** 1.90
- **4.** 11.5
- **5.** 8.26
- **6.** 2.14

$\begin{array}{c c} \hline 002 & 10.0 \text{ points} \\ \hline \text{What is the pH of a } 0.07 \text{ M } \text{Ba}(\text{OH})_2 \text{ aqueous} \\ \hline \text{solution?} \end{array}$	
1. 13.1461	
2. 8.7	

3. 0.853872

4. 1.31461

5. 9.8596

$\begin{array}{c|c} \hline 003 & 10.0 \text{ points} \\ \hline \text{What is } [\text{OH}^-] \text{ in a } 0.0050 \text{ M HCl solution}? \end{array}$

1. $6.6 \times 10^{-5} \text{ M}$	
2. $1.0 \times 10^{-7} \text{ M}$	
3. $2.0 \times 10^{-12} \text{ M}$	
4. 1.0 M	
0	

5. $5.0 \times 10^{-3} \mathrm{M}$

004 10.0 points

If the value of $K_{\rm b}$ for pyridine is 1.8×10^{-9} , calculate the equilibrium constant for

$$C_5H_5NH^+(aq) + H_2O(\ell) \rightarrow C_5H_5N(aq) + H_3O^+(aq)$$
.
1. 1.8×10^{-16}

2. 5.6×10^8 **3.** -1.8×10^{-9}

4. 5.6×10^{-6}

5. 1.8×10^{-9}

005 10.0 points

For the neutralization reaction involving HCl and Mg(OH)₂, how many liters of 0.60 M HCl are needed to react with 45 g of a 2.5 M Mg(OH)₂ solution? (density = 1.3 g/mL)

0.011 L
0.12 L
0.29 L
120 L
0.14 L
0.49 L

$\begin{array}{c|c} \hline 006 & 10.0 \text{ points} \\ \hline \text{The conjugate pair of } F^- \text{ is a...} \end{array}$

 $\mathbf{1.} \text{ weak acid}$

2. strong acid

3. strong base

- 4. weak base
- 5. neutral salt

Hydroxylamine is a weak molecular base with $K_{\rm b} = 6.6 \times 10^{-9}$. What is the pH of a 0.0500 M solution of hydroxylamine?

- **1.** pH = 8.93
- **2.** pH = 9.48
- **3.** pH = 7.12
- **4.** pH = 10.37
- **5.** pH = 9.26
- **6.** pH = 3.63
- **7.** pH = 4.74

008 10.0 points What is $[H_3O^+]$ when $[OH^-] = 3.3 \times 10^{-9}$ M?

- **1.** 6.6×10^{-5} M **2.** 3.3×10^{-9} M **3.** 3.0×10^{-6} M **4.** 3.3×10^{-5} M
- **5.** $1.0 \times 10^{-7} \text{ M}$

009 10.0 points

Calculate the resulting pH if 365 mL of 2.88 M HNO₃ is mixed with 335 mL of 1.10 M $Ca(OH)_2$ solution.

- **1.** 1.46
- **2.** 0.460
- **3.** 2.36
- **4.** 7.20
- **5.** 0.067
- **6.** 0.350

010 10.0 points

181 mL of an unknown HCl solution was neutralized in a titration with 36.2 mL of 0.250 M NaOH. What is the molarity of the unknown HCl solution?

1. 5.00×10^{-2} M **2.** 8.00×10^{-1} M **3.** 9.05×10^{-2} M **4.** 1.64×10^{3} M **5.** 2.50×10^{-1} M

011 10.0 points

Which of the following is the WEAKEST acid?

1. $HClO_2$		
2. HClO		
3. HNO ₃		
4. $HClO_4$		

012 10.0 points

Which equation represents K_{a2} for sulfurous acid?

	013 10.0) points
5. $SO_3^{2-}(aq$	$) + H_2O(\ell)$ HS	\rightarrow $\mathrm{SO}_3^-(\mathrm{aq}) + \mathrm{OH}^-(\mathrm{aq})$
4. H ₂ SO ₃ (a	$(\mathrm{Aq}) + 2 \mathrm{H}_2\mathrm{O}$ SO_3^2	$(\ell) \rightarrow$ $(aq) + 2 H_3 O^+(aq)$
3. HSO ₃ ⁻ (a	$(q) + H_2O(\ell)$	$) \rightarrow$ $D_3^{2-}(aq) + H_3O^+(aq)$
2. H ₂ SO ₃ (a	$H(q) + H_2O(\ell)$	$O_3^{(2)} \rightarrow O_3^{(aq)} + H_3O^+(aq)$
1. HSO ₃ ⁻ (a)	$(q) + H_2O(\ell)$ H_2S	$) \rightarrow$ SO ₃ (aq) + OH ⁻ (aq)

A 0.200 M solution of a weak monoprotic acid HA is found to have a pH of 3.00 at room

temperature. What is the ionization constant of this acid?

- **1.** 5.30
- **2.** 1.0×10^{-3}
- **3.** 1.8×10^{-5}
- **4.** 5.0×10^{-6}
- 5. 5.0×10^{-3}
- **6.** 2.0×10^{-5}
- 7. 1.0×10^{-6}
- 8. 2.0×10^{-9}

		014	$10.0 \mathrm{~p}$	\mathbf{oints}	
5°	\mathbf{C}	water	solutions	which	are

At 25° C, water solutions which are neutral have a pH of

1. about 7.

2. about 0.

- **3.** about 14.
- **4.** infinity.

015 (part 1 of 2) 10.0 points

Calculate the pH of the solute in an aqueous solution of $0.45 \text{ M C}_5\text{H}_5\text{N}(\text{aq})$ (pyridine) if the K_b is 1.8×10^{-9} . 1. 9.51306 2. 9.49978 3. 9.05019 4. 9.52207 5. 9.07918 6. 9.27815 7. 9.49181 8. 9.47273 9. 9.53576 10. 9.45424 Your answer must be within ± 0.005 .

What is the percentage protonation of the solute?

1.	0.0080904
2.	0.00518321
3.	0.00632456
4.	0.00733017
5.	0.00781133
6.	0.00524222
7.	0.0107763
8.	0.00884652
9.	0.00914991
10	$. \ 0.00569495$
Aı	nswer in units of $\%$.

017 10.0 points

Calculate the concentration of HCO_3^- present in 0.0322 M H₂CO₃.

1.0.000236977
$2. \ 0.000274474$
$3. \ 0.000319772$
4. 0.000117669
$5. \ 0.000225732$
$6. \ 0.000193972$
7. 0.00033068
8. 0.000304127
$9. \ 0.000152804$
$10. \ 0.000389878$
Answer in units of mol/L.

018 10.0 points

What is the pH of a	0.036 M HNO_3	solution?
---------------------	-------------------------	-----------

1. 2.72
2. 5.36
3. 12.56
4. 2.88
5. 1.64
6. 1.44
7. 1.36
8. 5.56

What is the pH of a 0.37 M solution of anilinium nitrate (C₆H₅NH₃NO₃)? K_b for aniline is 4.2×10^{-10} .

- $3.\ 2.75465$
- $4. \ 2.70956$
- $5.\ 2.73856$
- $6.\ 2.55905$
- 7. 2.60414
- 8. 2.67225
- 9. 2.52752
- $10.\ 2.58043$

Your answer must be within $\pm 0.4\%$

020 10.0 points

The ΔH° for the autoionization of water is 55.7 kJ/mol. Which of the following is/are true regarding the autoionization of pure water at 37°C?

- I) The concentration of H_3O^+ will be greater at $37^{\circ}C$ than at standard conditions
- II) $[OH^{-}] = [H_3O^{+}]$
- III) $K_{\rm w}$ is equal to 1 x 10⁻¹⁴
- IV) The concentration of OH^- will be lower at $37^{\circ}C$ than standard conditions
 - 1. I, II, and III
 - 2. I and II
 - **3.** II and IV
 - 4. III only
 - 5. II only

6. I, II, and IV

021 10.0 points

Which of the following can exhibit amphoterism?

1. CrO_4^{2-}

2. $HClO_4$

3. HPO₄²⁻
4. Sn²⁺
5. O²⁻

022 10.0 points

Consider the fractional composition diagram for the amino acid alanine.

What is the structure of the dominant species at pH 6?

1. $^{-}$ OOC — CH(CH₃)NH₃⁺

2. $^{-}$ OOC — CH(CH₃)NH₂

3. HOOC — $CH(CH_3)NH_3^+$

023 10.0 points

Trichloroacetic acid is a harsh chemical, typically used for cosmetic treatments such as tattoo removal. What is the pH of a .0800 M trichloroacetic acid solution (CCl₃COOH)?

1.	2.000
2.	1.097
3.	0.990
4.	0.824
5.	1.205

What is the hydroxide concentration $[OH^-]$ in an aqueous solution in which the hydronium ion concentration $[H_3O^+]$ is 1×10^{-5} M?

- **1.** 1×10^{-9} M
- **2.** 1×10^{-14} M
- **3.** 1×10^{-5} M
- 4. 1×10^{-7} M

025 10.0 points In the following equation, water is acting as a(n)... $C_6H_5COO^-(aq) + H_2O(l) \rightleftharpoons$ $C_6H_5COOH(aq) + OH^-(aq)$

1. Acid

- **2.** Base
- **3.** Neither

026 10.0 points

The generic weak acid HA has a percent ionization equal to 10.8% at a 0.025 M concentration. What is the $K_{\rm a}$ of this acid?

- **1.** 1.43×10^{-3}
- **2.** 4.54×10^{-4}
- **3.** 2.50×10^{-4}
- **4.** 5.97×10^{-4}
- 5. 3.27×10^{-4}

027 10.0 points

A student titrated a sample containing 107 mL of 0.28 M NaOH with 0.72 M HCl. What is the pH of the solution after 23 mL of the hydrochloric acid has been added?

- **1.** 13.02
- **2.** 0.98

3. -0.02

4. 7

5. 14.02

028 10.0 points

What is the concentration of H_3O^+ ions in a 0.20 M solution of Ca(OH)₂ at 25°C?

1.(0.40 M
2. 2	$2.5 \times 10^{-14} \mathrm{M}$
3. 1	$1 \times 10^{-13} \mathrm{M}$
4.	$1.2 \times 10^{-14} \mathrm{M}$
5.(0.20 M
6. 3	$3.7 \times 10^{-14} \mathrm{M}$

029 10.0 points

A 0.28 M solution of a weak acid is 3.5% ionized. What is the pH of the solution?

030 10.0 points

The hydronium ion concentration in a solution at pH 10 has what relationship to the hydronium ion concentration in a solution at pH 13?

- 1.3 times greater than
- **2.** 100 times less than
- **3.** 1,000 times less than
- 4. 1,000 times greater than

031 10.0 points

List the following solution species in order of increasing acidity (weakest acid to strongest acid). Important note: measure the acidity/basicity of the solution species as written.

HCN $(CH_3)_3NH^+$ HIO NH_4^+ 1. $(CH_3)_3NH^+ < HIO < NH_4^+ < HCN$ 2. $HIO < (CH_3)_3NH^+ < NH_4^+ < HCN$ 3. $HCN < NH_4^+ < (CH_3)_3NH^+ < HIO$ 4. $HIO < NH_4^+ < HCN < (CH_3)_3NH^+$ 5. $HCN < (CH_3)_3NH^+ < HIO < NH_4^+$ 6. $(CH_3)_3NH^+ < NH_4^+ < HCN < HIO$

032 10.0 points

According to the Bronsted-Lowry Theory of acids and bases, a base is

1. a substance which when dissolved in water yields OH⁻.

2. an electron acceptor.

3. a proton donor.

4. a proton acceptor.

5. an electron donor.

033 10.0 points

A 50.0 mL sample of 6 M HCl is added to 100.0 mL of 1.2 M NaOH. What is the pH of the resulting solution?

1. 0.09

2. 1.20

3. -0.08

4. 0.18

5. -1.20

034 10.0 points

The term " K_a for the ammonium ion" describes the equilibrium constant for which of the following reactions?

1. $NH_3 + H_3O^+ \rightleftharpoons NH_4^+ + H_2O$

2.
$$NH_4^+ + H_2O \rightleftharpoons NH_3 + H_3O^+$$

3. The term is misleading, because the ammonium ion is not an acid.

4. $NH_4^+ + OH^- \rightleftharpoons NH_3 + H_2O$ 5. $NH_4Cl(solid) + H_2O \rightleftharpoons NH_4^+ + Cl^-$ 6. $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$

035 10.0 points

The pH of 0.010 M aniline(aq) is 8.32.

What is the percentage aniline protonated?

1.0.69%		
2. 2.1%		
3. 0.21%		
4. 0.12%		
5. 0.021%		

036 10.0 points

What is the conjugate acid of NO_3^- ?

1. NO_2^-	
$2.~\mathrm{H^{+}}$	
3. NO_3^{2-}	
4. NH ₃	
5. OH ⁻	
6. HNO ₃	

037 10.0 points Write the charge balance equation for a dilute aqueous solution of HI.

1. $[H_3O^+] = [I^-]$ 2. $[H_3O^+] = [OH^-]$ 3. $[H_3O^+] = [I^-] + [OH^-]$ 4. $[I^-] = [OH^-] + [H_3O^+]$ 5. $[HI]_{initial} = [I^-]$

Which is NOT a conjugate acid-base pair?	3. 7.000
1. HCl : Cl ⁻	4. 6.431
$2. \operatorname{H_3SO}_4^+ : \operatorname{H_2SO}_4$	5. 10.23
$3. \text{ H}_2\text{SO}_4: \text{SO}_4^{2-}$	6. 10.47
$4. \ \mathrm{H_2: H^-}$	7. 10.84
$5. \ \mathrm{H_{2}O}: \mathrm{OH^{-}}$	8. 3.396

039 10.0 points

Assume that five weak acids, identified only by numbers (1, 2, 3, 4, and 5), have the following ionization constants.

Acid	Ionization Constant $K_{\rm a}$ value
1	1.0×10^{-3}
2	3.0×10^{-5}
3	2.6×10^{-7}
4	4.0×10^{-9}
5	7.3×10^{-11}

The anion of which acid is the strongest base?

- **1.** 1
- **2.** 5

3. 3**4.** 4

5. 2

040 10.0 points

What is the pH of a 0.24 M solution of potassium generate (KR-COO)? $K_{\rm a}$ for the generic acid (R-COOH) is 2.7×10^{-8} .

1. 3.526
2. 10.604
3. 7.000
4. 6.431
5. 10.234
6. 10.474
7. 10.844
8. 3.396
9. 7.569
0. 10.324

041 10.0 points

For a solution labeled " $0.10 \text{ M H}_3\text{PO}_4(\text{aq})$,"

- 1. $[H_2PO_4^-]$ is greater than 0.10 M.
- **2.** $[PO_4^{3-}] = 0.10 \text{ M}.$
- **3.** $[H^+] = 0.10 \text{ M}.$
- **4.** $[H^+]$ is less than 0.10 M.
- **5.** $[H^+] = 0.30 \text{ M}.$

042 10.0 points

Which of the following is true in pure water at any temperature?

1.
$$[H_3O^+][OH^-] = 1.0 \times 10^{-14}$$

2. $[H_3O^+] = [OH^-]$

3. pH = 7.0 or greater than 7.0

4. $K_{\rm w}$ decreases with increasing temperature.

5. pH = 7.0

043 10.0 points Determine the pH of a 0.000496 M solution of NaOH. 1 10 7459

1.	10.1409
2.	10.4928
3.	10.2833
4.	10.6955
5.	10.8506
6.	10.9138
7.	10.8156
8.	10.9523
9.	10.2279
10	. 10.7924

044 10.0 points

The pH of 0.010 M H₃PO₄(aq) is 2.24. Estimate the concentration of PO₄³⁻ in the solution. For H₃PO₄, the values of K_{a1} , K_{a2} , and K_{a3} are 7.6×10^{-3} , 6.2×10^{-8} , and 2.1×10^{-13} , respectively.

- **1.** $2.1 \times 10^{-13} \text{ M}$
- **2.** $5.8 \times 10^{-3} \text{ M}$
- **3.** 6.2×10^{-8} M
- 4. $2.3 \times 10^{-18} \text{ M}$
- **5.** 7.6×10^{-3} M

3. H₃PO₄

045 10.0 points
What is the conjugate base of HPO_4^{2-} ?
1. OH ⁻
2. HPO_4^{2-}

4. $H_2PO_4^-$

5. PO_4^{3-}

046 10.0 points

What is the percent ionization for a weak acid HX that is 0.40 M? $K_{\rm a} = 4.0 \times 10^{-7}$.

1.	2.0%
2.	0.10%
3.	0.050%
4.	0.020%
5.	0.00020%

047 10.0 points

In the complete neutralization of butanoic acid (a weak acid) with an equal amount of sodium hydroxide (NaOH), the dominant species in the resulting solution is a...

- 1. weak base
- 2. weak acid
- **3.** strong base
- 4. neutral salt
- **5.** strong acid

048 10.0 points

What is the pH of a 0.480 M trimethylamine $(CH_3)_3N$ solution?

1.	8.81
2.	11.48
3.	11.87
4.	8.86
5.	2.13

6. 8.96

7. 2.25

8. 11.74

049 10.0 points

Which of the following aqueous solutions gives a pH greater than 7?

1. 10^{-8} M CH₃COOH

2. 10^{-8} M HCl

3. None of the solutions gives a pH greater than 7.

4. 10^{-8} M NH₄Cl

5. 10^{-8} M HCOOH

050 10.0 points What is $[OH^-]$ when $[H_3O^+] = 8.2 \times 10^{-5}$ M? 1. 1.2×10^{-10} M

- **1.** 1.2 × 10 10
- $\textbf{2.}~6.3\times10^{-9}~\mathrm{M}$
- **3.** $1.2 \times 10^{-4} \mathrm{M}$
- 4. $1.0\times10^{-7}~{\rm M}$

5. $8.2 \times 10^{-5} \mathrm{M}$

051 10.0 points

Which pH represents a solution with 1000 times higher [OH⁻] than a solution with pH of 5?

pH = 3
pH = 6
pH = 2
pH = 8

5. pH = 7

pH = 0.005
pH = 4
pH = 5000

9. pH = 1